

Socio-economic characteristics and resource endowment of smallholder farmers governs potassium fertilizer use and maize yield variability in India

T. Satyanarayana, Ph. D Director, IPNI South Asia Programme

K fertilizer use in India – Trends and Facts

- Potassium has long been considered as a neglected nutrient in Indian Agriculture
- Potash contributed to less than 10% of the total nutrient consumption in the country
- K response in India varied from 0.7 t/ha in wheat to almost 1.0 t/ha in rice and maize (Majumdar et al., 2012)
- IPNI NuGIS approach showed negative K balances in most of the states of India (Dutta et al., 2013)

Nutrient Expert®: Fertilizer Decision Support System for promoting better fertilizer recommendations

Nutrient Expert® (NE) increased Yield and Profitability

Parameter	Unit	Effect of NE (NE – FFP)					
		Wheat	Maize	Rice			
		(n = 701)	(n = 412)	(n = 323)			
Grain yield	t/ha	+0.79 ***	+1.27 ***	+1.16 ***			
Fertilizer N	kg/ha	-8 ***	_6 ns	+26 ***			
Fertilizer P ₂ O ₅	kg/ha	-4 ***	-16 ***	-5 *			
Fertilizer K ₂ O	kg/ha	+54 ***	+22 ***	+2 ns			
Fertilizer cost	USD/ha	+17 ***	—1 ns	+3 ns			
Gross profit	USD/ha	+163 ***	+256 ***	+235 ***			

***, **, *: significant at <0.001, 0.01, and 0.05 level; ns = not significant

Integrating socio-economics and farmers' resource endowment with Nutrient Expert®

- The study was conducted in India and Nepal, 4 states in Eastern India; 2 states in Southern India; 2 districts in Eastern Terai of Nepal
- Two blocks in each state; Three villages in each block; 15 farmers in each village; Total 180 farmers in each state were covered
- Undertaken RRS and gathered information on maize yield, input use, farm size, livestock ownership, off-farm income, availability of family and hired labor etc.

Socio-economics governs maize yield variability and Fertilizer K use

Resource endowment of farmers related to maize yield variability and Fertilizer K use

District	Parameter	Farm Income	Non-farm Income	Total Income	Farm Size		
Karimnagar	Yield	0.76*	-0.64 [*]	ns	ns		
	K ₂ O	ns	ns	0.39*	ns		
Medak	Yield	ns	ns	ns	0.43**		
	K ₂ O	ns	-0.21 [*]	ns	-0.22**		
Nizamabad	Yield	-0.58*	ns	-0.693 [*]	-0.84*		
	K ₂ O	0.42**	ns	ns	0.49*		
Mahabubnagar	Yield	0.38**	0.35**	0.37**	0.25**		
	K₂O	ns	ns	ns	ns		
* Significant at 5% ** Significant at 1%							

Typology delineation: Conceptual Framework for Technology Targeting in Smallholder Systems

Farm typology delineation: Case study from West Bengal

Rapid Rural Survey, first step in typology delineation

Baruipur, South 24 Parganas

Patharpratima, South 24 Parganas

Kulgachhi, Nadia

Keshpur, West Medinipur

Lalgola, Murshidabad

Methodology of farm typology delineation

Fertilizer recommendations using Nutrient Expert® across different farm types

Nutrients	Treatments	Farm Type 1 (Moderate- resourced commercial maize grower)	Farm Type 2 (Exclusive cultivators with large holding and large family)	Farm Type 3 (Low- yielding new maize growers)	Farm Type 4 (Moderately resourced family farms)	Farm Type 5 (Traditional maize grower)	Farm Type 6 (Resource- rich commercial seed producers)
N	FFP	140.16	159.87	87.65	96.94	162.66	201.93
	NE®	128.70	136.18	135.61**	122.74	124.27	124.01*
P	FFP	109.00	102.35	83.37	45.26	53.02	182.27
	NE®	39.28	38.81	40.67	41.60	40.25	40.97*
K	FFP	59.41	42.17	66.27	31.80	38.60	86.35
	NE [®]	63.58	51.52	55.44	49.71	86.34**	59.14*

^{*} Highest reduction; ** Highest increase

Comparison of maize yield across different farm types

Conclusions

- The farm typology- based nutrient recommendations in this study, demonstrated a significant increase in agronomic and economic benefit over current farmer fertilizer practices.
- This approach proved to be an excellent means for largescale dissemination of Nutrient Expert based 4R fertilizer recommendations.
- We see an opportunity to project farm typology concept as a missing link in the current knowledge dissemination process.

Acknowledgement

E-mail: tsatya@ipni.net

sdutta@ipni.net

Thank you for your kind attention