Influence of Potassium Nutrition
On Nitrogen Use Efficiency

Philip J. White
(The James Hutton Institute, UK)

Jeff J. Volenec
(Purdue University, USA)

Frontiers in Potassium
Conference and Workshop,
Rome, Italy, 18 January 2017



Nitrogen Use Efficiency

NUE = NUpE x NUIE

Agronomic N Use Efficiency =

N Uptake Efficiency x N Utilisation Efficiency

(yield / available N) =
(N acquired / available N)  x (yield / N acquired)
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Plant Mineral Nutrition and Crop Yield
Liebig’s Law of The Minimum

Crop yield is determined by a
critical input that is in short
supply: the limiting factor.

Inputs that do not correct the
limiting factor are generally
ineffective in increasing yield.

Minimum

Any nutrient that limits yield will
reduce the use efficiency (yield
/ input) of all other nutrients.
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Optimising Crop Nutrition
Maximises Yield and Resource Use Efficiency
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Optimising Crop Nutrition
Maximises Yield and Resource Use Efficiency
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Optimising Mineral Nutrition
Crop and Environment Specific

Agronomic Models assisting fertiliser management
that account for interactions between N, P and K:

* Quantitative evaluation of the fertility of
tropical soils — QUEFTS (Janssen et al. 1990)

* Warwick-HRI software combining N_ABLE,
PHOSMOD and POTAS (Zhang et al. 2007)

* Nutrient Expert software for hybrid maize
(Xu et al. 2016)
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Nitrogen Uptake Efficiency

NUE = NUpE x NUIE

Agronomic strategies accelerating N delivery to roots
(1) Increasing N concentration in the soil solution
(2) Increasing mass flow of the soil solution

Physiological strategies accelerating N uptake by roots
(1) Increasing capacity for N transport across the plasma membrane
(2) Increasing the surface area of the root system
(3) Placement of roots in volumes with greatest N availability
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Nitrogen in Agriculture

* Increase capacity for N uptake
* Reduce losses to environment
Accelerate decomposition of organic matter

Nitrogen Cycle



Improving Nitrogen Uptake
Direct and Indirect Effects of Potassium

Direct effects
* K*and NH,* compete for exchange sites in the soil
 K*uptake provides charge compensation for nitrate uptake

Indirect Effects

 Potassium is required by microbes and, therefore,
can affect N cycle in soil (nitrification/denitrification)
and N, fixation in legumes

 Plant K nutrition affects transpiration and, thereby, mass flow
of soil solution to root surface

* Plant K nutrition affects phloem transport and, therefore,
N-assimilation in shoot, carbon allocation within plants,

and root architecture
‘.‘ The James
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Root System Architectures
for Nutrient Acquisition
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Topsoil foraging for P Intermediate response for K Steep, cheap and deep for N
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Nutrients Affect Root System Architecture
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status £\ supply
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Nutrients Affect Root System Architecture
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Regulation of Nitrate Uptake by
Plant Nutritional Status
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Uptake of Nitrate, Ammonium
and Organic Nitrogen by Roots

Nitrate Uptake
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Regulation of Nitrogen Acquisition

N status of the plant
Organic N metabolites

Effectors NOg
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Importance of Potassium Nutrition
Carbon Allocation & Systemic Signalling
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Traits Improving Nitrogen Use Efficiency

* NUtE often contributes more than NUpE to NUE when N supply low
» Crops with greater NUtE have faster canopy establishment, greater
photosynthesis, larger harvest index, lower critical N concentrations,
better N redistribution between tissues...

NUE = NUpE x NUtE
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Importance of Potassium Nutrition
For Nitrogen Utilisation Efficiency

Adequate potassium nutrition affects all
aspects of Nitrogen Utilisation Efficiency:

- Capacity for growth: especially cell
elongation, water relations & gas exchange

- Assimilation of nitrogen: especially for
photosynthesis, growth and yield formation

- Partitioning of C and N to growth of new
tissues: impacts root N acquisition and
photosynthesis

-Translocation of C and N to seed, harvest
index and yield formation

NUE = NUpE x NUtE
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Importance of Potassium Nutrition
Nitrogen Assimilation in Shoot
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Importance of Potassium Nutrition
Nitrogen Redistribution

10
Partitioning of Nitrogen in a Potato Plant
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Importance of Potassium Nutrition
Nitrate Uptake and Redistribution

Importance for maintaining charge balance in xylem and phloem
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Potassium Deficiency Reduces Photosynthesis
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Potassium deficiency in cotton
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Summary — Potassium Nutrition
Influences Nitrogen Use Efficiency

Optimising Crop Nutrition
maximises yield and resource use efficiency

Optimising Potassium Nutrition
improves NUE, NUpE, and NUtE

allows root architecture and N uptake to respond to N supply
enables nitrate uptake & N assimilation in shoot
enables C and N redistribution in plant
maximises photosynthesis, harvest index, and yield
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